A Mechanism for Conductance Switching in Carbon-Based Molecular Electronic Junctions

نویسندگان

  • Ali Osman Solak
  • Srikanth Ranganathan
  • Takashi Itoh
  • Richard L. McCreery
چکیده

A molecular junction formed by a 10-15 Å organic monolayer between carbon and mercury contacts exhibited conductance switching for several monolayer structures. When the carbon potential was scanned to a sufficiently negative voltage relative to the mercury, the junction resistance suddenly decreased by at least an order of magnitude, and high resistance could be restored by a positive voltage scan. The high and low conductance states were persistent, and conductance switching was repeatable at least 100 cycles for the case of a terphenyl junction. The switching behavior is consistent with phenyl ring rotation and formation of a planar, quinoid structure as a consequence of electron injection into the monolayer. A unique feature of the junction structure is the strong electronic coupling between the monolayer p system and the graphitic carbon through a quinoid double bond. Not only does this interaction lead to high conductivity and possible practical applications as a molecular switch, it also combines the electronic properties of the conjugated monolayer with those of the graphitic substrate. The switching mechanism reported here is an example of ‘‘dry electrochemistry’’ in which a redox process appears to occur under the influence of a high electric field in the absence of solvent or electrolyte. © 2002 The Electrochemical Society. @DOI: 10.1149/1.1490716#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.

Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is bia...

متن کامل

Electron transport and redox reactions in carbon-based molecular electronic junctions.

A unique molecular junction design is described, consisting of a molecular mono- or multilayer oriented between a conducting carbon substrate and a metallic top contact. The sp2 hybridized graphitic carbon substrate (pyrolyzed photoresist film, PPF) is flat on the scale of the molecular dimensions, and the molecular layer is bonded to the substrate via diazonium ion reduction to yield a strong,...

متن کامل

Light‐Induced Switching of Tunable Single‐Molecule Junctions

A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of ...

متن کامل

خواص ترابرد الکترونی نانولوله کربنی فلز - نیمرسانا - فلز

 In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT) attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function me...

متن کامل

Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes.

We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ, resulting in formation of a direct covalent σ bond between the carbon backbone and the gold metal electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002